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Abstract

A new mathematical model for wet chemical etching process is presented. The proposed method is a fixed-grid

approach based on the total concentration of etchant. It is analogous to the enthalpy method used in the modeling

of melting/solidification problems. The total concentration is the sum of the unreacted etchant concentration and

the reacted etchant concentration. The reacted etchant concentration is used to capture the etchfront. The governing

equation based on the total concentration is formulated. This governing equation is shown to be equivalent to the con-

ventional governing equation. It also contains the interface condition. A procedure to update the reacted concentration

is presented. Numerical results for one-dimensional diffusion-controlled and reaction-controlled etching are presented.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Wet chemical etching (WCE) is an important litho-

graphic process for the fabrication of electronic devices.

It is a process of removing a small layer of material from

the substrate surface by chemical reaction with a reagent

material called etchant to give a specific pattern on the

substrate surface. WCE process is widely applicable in

manufacturing shadow mask for color-television tubes

[1], IC devices in microelectronics industries [2], MEMS

devices such as hinges [3] and pressure sensors [4] etc.

WCE has been modeled using asymptotic solution

[5], moving grid (MG) approach [6–11] and level-set

method [12–14]. One-dimensional [10] and two-dimen-
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sional [5–9,11] diffusion-controlled [5–9] and reaction-

controlled [6,8–11] etching were examined. The effects

of natural and forced convection were studied by Shin

and Economou [8,9].

Kuiken [5] presented an asymptotic solution for

WCE. The substrate is partly protected by a mask mak-

ing it a two-dimensional problem. The solution is valid

for diffusion-controlled etching using dilute etchant.

The most widely used approach for WCE is the MG

method. In the MG method, the etchant domain is dis-

cretized and the etchant concentration is solved using

appropriate boundary conditions and a specified initial

condition. The etchfront velocities are then calculated

and the computational domain enlarged to account for

the depletion of the substrate. The process is repeated

until the desired etch depth has been achieved or when

the specified etching time has been reached. As the

computational domain expands with time, the computa-

tion mesh is regenerated at every time step. Due to the
ed.
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Nomenclature

a coefficient of the discretization equation

C unreacted etchant concentration

CR reacted etchant concentration

CR,max maximum possible value of the reacted

concentration

CT total concentration

D diffusion coefficient

k rate constant of reaction

MSub molecular weight of the substrate

m stoichiometric reaction parameter

t time

v velocity of the interface

x coordinate direction

List of abbreviations

DG Deal–Grove model

FG fixed grid method

MG moving grid method

ECV etching control volume

FVM finite volume method

WCE wet chemical etching

Greek symbols

a underrelaxation factor

Dt time step

qSub density of the substrate

b non-dimensional etching parameter

Subscripts

0 initial

P control volume P

Sub the substrate

Et the etchant

Superscripts

m iteration number

0 previous time step
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movement of the mesh, the mesh velocities must be ac-

counted for. As a result of the mesh velocities, a diffu-

sion problem becomes a convection-diffusion problem

and a convection term must be included in the governing

equation [6,11]. Further, an unstructured mesh or a

body-fitted grid system is needed to model multidimen-

sional WCE [6,8,9,11].

Vuik and Cuvelier [6] model two-dimensional WCE

using a MG approach. The governing equation was dis-

cretized using the finite-difference method. Both diffu-

sion-controlled and reaction-controlled etchings were

modeled. Mesh velocities due to the expanding compu-

tational domain were included in the model. Kuiken

et al. [7] presented an exact solution for diffusion-con-

trolled etching in a one-dimensional geometry. In the

same paper a two-dimensional numerical approach for

diffusion-controlled etching based on MG method is

also presented. The finite-difference method was used

to discretize the governing equation and the effect of grid

velocities is neglected. Shin and Economou [8] studied

the effect of flowing etchant on the shape evolution of

two-dimensional etched cavities using the MG ap-

proach. The finite-element method was employed to

solve for the fluid velocity profiles and for the etchant

concentration distributions in cavities of arbitrary

shapes. In this model, the extra convective term due to

grid velocities was neglected. It has been found that with

fluid flow in the cavity, the time-averaged etch rate in-

creased four times and the time-averaged etch aniso-

tropy increased by 40% as compared to pure diffusion

under condition studied. The etch anisotropy is a mea-
sure of mask undercut during etching. For perfect aniso-

tropic etching, there is no mask undercut. Shin and

Economou [9] compared the effects of forced and natu-

ral convection on the shape evolution of deep etching

cavities. Forced convection was found to be very ineffec-

tive for etching deep cavities. The etching rate decreased

sharply with time as the cavity became deeper during

etching. At the same time, the etching rate distribution

along the active surface (the substrate surface in contact

with etching fluid where reaction is taking place) became

nearly uniform, degrading etch anisotropy. In contrast,

natural convection was effective for rinsing the dissolu-

tion products (products of reaction) out of the cavity.

Li et al. [10] used MG approach to predict the etch rate

of phosphosilicate-glass (PSG) in hydrofluoric acid (HF)

for radial geometry. The etchant solution is assumed to

be stationary and mesh velocities were not included in

the model. The reaction assumed to be mixed order

i.e. a combination of first and second order reaction

kinetics. Kaneko et al. [11] used a MG approach to

model reaction-controlled WCE of an aluminium sub-

strate using the finite-element method. Two-dimensional

etching is considered and a first order reaction kinetic

is assumed. The extra convective term due to grid

velocities was also taken into account in this model.

Adalsteinsson and Sethian [12,13] simulated two- and

three-dimensional deposition, etching, and lithography

in integrated circuit fabrication using a level-set

model. La Magna et al. [14] used a level-set method to

simulate two-dimensional reaction-controlled etching

process.
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Fig. 1. Schematic of a one-dimensional etching problem and

coordinate system.
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In this article, a fixed-grid (FG) method [15] for WCE

is presented in detail. A total concentration which is the

sum of unreacted etchant concentration and reacted

etchant concentration is defined in the proposed FG

method. In this formulation, the reacted concentration

of etchant is a measure of the etch depth. Since the grid

size is fixed, there is no grid velocity. Hence a diffusion

problem always remains a diffusion problem. Cartesian

grid can be used to capture the complicated etchfront

in multidimensional etching problems. The proposed

method is analogous to the enthalpy method used in

the modeling of melting/solidification process [16–32].

The remainder of this article is divided into six sec-

tions. In the next section, a one-dimensional WCE prob-

lem, the governing equation, the interface condition and

the boundary conditions are described. Various ingredi-

ents of the proposed FG approach are discussed in the

following section. In this section, a new concentration

is defined. The governing equation based on the newly

defined total concentration which contains the interface

condition, is formulated. A procedure to update the re-

acted concentration is also presented. The overall solu-

tion procedure is then summarized. A brief description

of the numerical method used in this article follows. A

discussion of the results obtained using the proposed

FG method is given. Some concluding remarks are given

to conclude the article.
2. Problem description

The schematic and coordinate system used for the

one-dimensional geometry considered in this article is

shown in Fig. 1. The initial etchant concentration at

t = 0 is C0. At t > 0, the reaction between the etchant

and the substrate at the etchant–substrate interface re-

sults in the reduction of the concentration of etchant

adjacent to the etchant–substrate interface and the

depletion of the substrate. The origin of the coordinate

system is set to the etchant–substrate interface at t = 0.

With this definition, the coordinates of the region occu-

pied by the substrate at t = 0 is negative. The governing

equation, the interface condition and the boundary con-

ditions are presented next.

2.1. Governing equation

For a quiescent etchant solution, the etchant concen-

tration within the etchant domain is governed by the

mass diffusion equation given by

oC
ot

¼ o

ox
D
oC
ox

� �
ð1Þ

where C, D, t and x are the concentration of the etchant,

the diffusion coefficient of the etchant, the time and the

distance respectively. Strictly speaking, there is another
etchant concentration equation within the substrate do-

main. Since the etchant concentration is zero within the

substrate at all time, this equation is not solved.

2.2. Interface condition

For the situation shown in Fig. 1, the interface con-

dition at the etchant–substrate interface is given by

D
oC
ox

¼ mqSub
MSub

dd
dt

¼ mqSub
MSub

v ð2Þ

where m, qSub,MSub, d and v are the stoichiometric reac-

tion parameter, the density of the substrate, the molecu-

lar weight of the substrate, the etch depth and the

velocity of the etchfront respectively.
2.3. Boundary conditions

There are two boundary conditions associated with

the governing equation (Eq. (1)): one at the etchant–

substrate interface and another at the ‘‘free’’ boundary

(i.e. opposite to the etchant–substrate interface). The

mass diffusion flux at the interface is related to the

reaction rate. For a first order reaction in the coordinate

system as shown in Fig. 1, the mass diffusion flux is

given as

D
oC
ox

¼ kC at x ¼ �dðtÞ ð3Þ
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where k is the rate constant of the reaction. The bound-

ary condition at the ‘‘free’’ boundary is given as

C ¼ C0 at x ! 1 ð4Þ
0-L s L e

Substrate Etchant

0-Ls Le-∆x

Substrate Etchant

(a)

(b)

Fig. 2. Etchant–substrate interface locations at two time steps:

(a) time t and (b) time t + Dt.
3. Mathematical formulation

A FG method is proposed in this article. Various

ingredients of the proposed FG method are presented

in this section.

3.1. Total concentration

In the proposed FG method, a new variable called

the total concentration is defined as

CT � C þ CR ð5Þ

where CT, C and CR are the total concentration, the

(unreacted) etchant concentration and the reacted (etch-

ant) concentration respectively. Physically, CR is the

etchant concentration consumed in the reaction process.

As such it is constant except at the etchant–substrate

interface. This is used to capture the etchfront implicitly.

The value of CR changes from 0 to its maximum possible

value of CR,max in a control volume where etching is tak-

ing place. The maximum possible value of the reacted

concentration (CR,max) is the amount of etchant required

per unit volume of substrate to dissolve the substrate

during reaction. The exact expression for CR,max will

be derived later.

3.2. Governing equation

A governing equation in-terms of the total concentra-

tion is derived in this section. Consider a one-dimensional

control volume of thickness dx and cross-sectional area

Ac. In the absence of convection, mass balance in the

control volume dx, can be written as

Jx � Jxþdx ¼
d

dt
ðCTAc dxÞ ð6Þ

In Eq. (6), the three terms are the rate of moles of species

into the control volume dx, the rate of moles of species

leaving the control volume dx and the rate of change of

total moles of species inside the control volume dx

respectively. Eq. (6) can be rewritten as

d

dt
ðCTAc dxÞ ¼ Jx � Jx þ

o

ox
ðJxÞdx

� �
¼ � o

ox
ðJxÞdx ð7Þ

Using the Fick�s law, Eq. (7) can be written as

dCT

dt
¼ o

ox
D
oC
ox

� �
ð8Þ

Eq. (8) is the governing equation based on the total

concentration. This equation is valid in both the etchant
and the substrate regions. The interface condition given

by Eq. (2) is contained in Eq. (8) implicitly. This is

shown next.

3.3. Interface condition

Using Eq. (8), the integral form of the governing

equation based on the total concentration for a one-

dimensional control volume spanning xl 6 x 6 xu can

be written as

d

dt

Z xu

xl

CT dx ¼
Z xu

xl

o

ox
D
oC
ox

� �
dx

¼ D
oC
ox

� �
xu

� D
oC
ox

� �
xl

ð9Þ

Consider an elementary control volume of length L

(L = Le + Ls, which contains the interface) as shown in

Fig. 2 at two time intervals. Between t and t + Dt, an

Dx-thick layer of substrate has been etched away. Loca-

tions of the interface at time t and at time t + Dt are

shown in Fig. 2. The total concentrations at t and

t + Dt areZ Le

�Ls

Ct
T dx ¼

Z �Dx

�Ls

ðCt
TÞSub dxþ

Z 0

�Dx
ðCt

TÞSub dx

þ
Z Le

0

ðCt
TÞEt dx ð10Þ

andZ Le

�Ls

CtþDt
T dx ¼

Z �Dx

�Ls

ðCtþDt
T ÞSub dxþ

Z 0

�Dx
ðCtþDt

T ÞEt dx

þ
Z Le

0

ðCtþDt
T ÞEt dx ð11Þ
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where the subscripts Et and Sub represent the total con-

centrations in the etchant and the substrate regions

respectively. Subtracting Eq. (10) from Eq. (11), givesZ Le

�Ls

CtþDt
T � Ct

T

� �
dx ¼

Z �Dx

�Ls

ðCtþDt
T � Ct

TÞSub dx

þ
Z 0

�Dx
ðCtþDt

T ÞEt � ðCt
TÞSub

� 	
dx

þ
Z Le

0

ðCtþDt
T � Ct

TÞEt dx

ð12Þ

Dividing both sides by Dt, and taking limits as Dt ! 0

gives

d

dt

Z Le

�Ls

CT dx ¼
d

dt

Z �Dx

�Ls

ðCTÞSub dx

þ lim
Dt!0

Z 0

�Dx

ðCtþDt
T ÞEt � ðCt

TÞSub
� 	

Dt
dx

þ d

dt

Z Le

0

ðCTÞEt dx ð13Þ

Using Eq. (9), Eq. (13) can be written as

d

dt

Z Le

�Ls

CT dx ¼ D
oC
ox

� �
Sub;�Dx

� D
oC
ox

� �
�Ls

þ lim
Dt!0

Z 0

�Dx

ðCtþDt
T ÞEt � ðCt

TÞSub
� 	

Dt
dx

þ D
oC
ox

� �
Le

� D
oC
ox

� �
Et;0

ð14Þ

Eq. (14) can be rearranged as

d

dt

Z Le

�Ls

CT dx� D
oC
ox

� �
Le

� D
oC
ox

� �
�Ls

" #

¼ lim
Dt!0

Z 0

�Dx

ðCtþDt
T ÞEt � ðCt

TÞSub
� 	

Dt
dxþ D

oC
ox

� �
Sub;�Dx

� D
oC
ox

� �
Et;0

ð15Þ

Using Eq. (9), Eq. (15) reduces to

D
oC
ox

� �
Et;0

� D
oC
ox

� �
Sub;�Dx

¼ lim
Dt!0

Z 0

�Dx

ðCtþDt
T ÞEt � ðCt

TÞSub
� 	

Dt
dx ð16Þ

In the substrate, the unreacted etchant concentration is

zero. As a result, the second term of Eq. (16) vanishes

and Eq. (16) becomes

D
oC
ox

� �
Et;0

¼ lim
Dt!0

Z 0

�Dx

ðCtþDt
T ÞEt � ðCt

TÞSub
� 	

Dt
dx ð17Þ

As Dt ! 0, the ratio dx/Dt approaches v, where v is the

local normal velocity of the interfacial surface element
towards the substrate region. Attention is now focused

on the remaining terms. At time t, the interface is occu-

pied by the substrate. As the interface is occupied by the

substrate, the reacted concentration is zero. The unre-

acted concentration at the interface is finite. As a result,

the total concentration is

ðCt
TÞSub ¼ Ct þ Ct

R ¼ Ct ð18Þ

At time t + Dt, the total concentration is

ðCtþDt
T ÞEt ¼ CtþDt þ CtþDt

R ð19Þ

From Fig. 2(b), a layer of substrate has been etched

away and the vacated space is now filled with the etch-

ant. As Dt ! 0, the unreacted concentration Ct+Dt ! Ct

and the reacted concentration CtþDt
R ! CR;max. Hence

Eq. (19) reduces to

ðCtþDt
T ÞEt ¼ Ct þ CR;max ð20Þ

Using Eqs. (18) and (20), Eq. (17) becomes

D
oC
ox

¼ CR;maxv ð21Þ

The exact expression for CR,max is now derived. In a unit

volume, there are qSub/MSub moles of substrate. The

reaction between the etchant and the substrate can be

represented as

S þ mE ! qP ð22Þ

where S, E and P are the substrate, the etchant and the

product respectively. From Eq. (22) it is seen that the

amount of etchant needed to dissolve a unit volume of

substrate is mqSub/MSub. As CR,max is the amount of

etchant required per unit volume of substrate to dissolve

the substrate during reaction, it can therefore be written

as

CR;max ¼
mqSub
MSub

ð23Þ

Using Eq. (23), Eq. (21) becomes

D
oC
ox

¼ mqSub
MSub

v ð24Þ

which is the interface condition given in Eq. (2).

3.4. Procedure to update CR

A procedure to calculate the reacted etchant concen-

tration CR is presented in this section. The governing

equation (Eq. (8)) is rewritten using Eq. (5) as

oC
ot

¼ o

ox
D
oC
ox

� �
� oCR

ot
ð25Þ

As the reacted concentration is constant away from the

etchant–substrate interface, Eq. (25) reduces to the origi-

nal governing equation (Eq. (1)) except at the etchant–

substrate interface. At the etchant–substrate interface,

the reacted etchant concentration is a measure of the
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Fig. 3. A control volume (P) undergoing etching: (a) the ECV

when etching starts and (b) the ECV during etching.
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amount of substrate being etched. In the proposed FG

method, a control volume (Fig. 3) where etching is tak-

ing place is identified and called the etching control vol-

ume (ECV). In this ECV, CR changes from 0 to its

maximum possible value CR,max. A procedure to update

CR in the ECV is described in this section. The finite vol-

ume discretized equation (using implicit scheme) of Eq.

(25) for a control volume P (control volume undergoing

etching i.e. ECV) as shown in Fig. 3 is given as

aPC
m
P ¼

X
anbC

m
nb þ a0PC

0
P � ðCm

R;P � C0
R;P Þ

DxP
Dt

ð26Þ

where m, 0, P, nb, a, Dx and Dt are the mth iteration of

the current time step, the previous time step, the control

volume P, the neighboring control volumes, the coeffi-

cients of the discretization equation, the volume of a

control volume, and the time step respectively. Eq.

(26) is valid for all control volumes. However, as CR is

constant in the etchant and substrate, the last term on

the right side of Eq. (26) is zero except in the ECV. At

the (m + 1)th iteration, Eq. (26) can be written as

aPC
mþ1
P ¼

X
anbC

mþ1
nb þ a0PC

0
P � ðCmþ1

R;P � C0
R;P Þ

DxP
Dt

ð27Þ

Subtracting Eq. (27) from Eq. (26) and rearranging,

gives

Cmþ1
R;P ¼Cm

R;P þ
Dt
DxP

aP ðCm
P �Cmþ1

P Þþ
X

anbðCmþ1
nb �Cm

nbÞ
h i

ð28Þ

When the solution converges, the last term of Eq. (28)

will be zero. However, during the initial iteration pro-

cess, it is most likely a non-zero term. Realizing that it

is zero upon convergence, this term can be ignored from

the calculation and Eq. (28) becomes

Cmþ1
R;P ¼ Cm

R;P þ aaP
Dt
DxP

ðCm
P � Cmþ1

P Þ ð29Þ
where a is the under-relaxation parameter. Eq. (29) is

used in updating the reacted concentration in the

ECV. In Eq. (29), Cmþ1
P is approximated as

Cmþ1
P ¼ 1

2
ðCm

e þ Cm
wÞ ð30Þ

where Cm
e and Cm

w are the east and the west interface con-

centrations of ECV and these are approximated using

Eq. (3) as

Cm
e ¼ Cm

E

1þ ke
De

DxE
2

ð31aÞ

Cm
w ¼ Cm

P

1þ kw
Dw

DxP
2

ð31bÞ

where DxP and DxE are widths of the control volume

ECV and an adjacent control volume to the east of

ECV as shown in Fig. 3.

3.5. Initialization of the etchant concentration in the ECV

When etching starts in an ECV, the initial unreacted

etchant concentration of the ECV is approximated using

the boundary condition at the interface as given in Eq.

(3). Consider an ECV as shown in Fig. 3, which has

two interfaces—e and w respectively. From Eq. (3), the

nodal concentration when etching starts in the ECV is

given as

DP
Cm
e � Cm

w

DxP
¼ kPC

m
P ð32Þ

Using Eq. (31a) and (31b), Cm
P can be written as

Cm
P ¼ Cm

E

1þ keDxE
2De

� �
kPDxP
DP

þ 1

1þkwDxP
2Dw

� � ð33Þ
4. Overall solution procedure

The overall solution procedure for the proposed FG

method based on the total concentration can be summa-

rized as follows:

1. Specify the etchant and the substrate domains.

Ensure that the etchant–substrate interface lies on

the interface between two control volumes.

2. Set the initial etchant concentration as C0 in the etch-

ant domain and 0 in the substrate domain.

3. Initially set CR to 0 in the substrate domain and

CR,max in the etchant domain respectively.

4. Advance the time step to t + Dt.

5. Identify the etching control volumes. These are the

substrate control volumes with adjacent etchant con-

trol volumes.
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6. Set the etchant concentration of the previous time

step and initialize the etchant concentration of the

current time step in the ECV using Eq. (33).

7. Solve Eq. (25) for the concentration.

8. Update the reacted concentration in the ECV using

Eq. (29).

9. Check for convergence.

[a] If solution has not converged, check the calculated

reacted concentration.

• If CR < CR,max, repeat (7) to (8).

• If CR P CR,max, then set CR = CR,max and

repeat (5) to (8).
[b] If solution has converged, then check if the num-

ber of time steps has been reached. If yes, stop. If

not, repeat (4) to (8).
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5. Numerical method

In this article, the finite-volume method (FVM) of

Patankar [33] is used to solve the concentration

equation. Since a detailed discussion of the FVM is

available in Patankar [33], only a very brief descrip-

tion of the major features of the FVM used is given

here.

In the FVM, the domain is divided into a number of

control volumes such that there is one control volume

surrounding each grid point. The grid point is located

in the center of a control volume. The governing equa-

tion is integrated over each control volume to derive

an algebraic equation containing the grid point values

of the dependent variable. The discretization equation

then expresses the conservation principle for a finite

control volume just as the partial differential equation

expresses it for an infinitesimal control volume. The

resulting solution implies that the integral conservation

of mass is exactly satisfied for any control volume and

of course, for the whole domain. The resulting algebraic

equations are solved using a line-by-line tri-diagonal

matrix algorithm. In the present study, a solution is

deemed converged when the maximum change in the

concentration and the maximum change in the reacted

concentration between two successive iterations are less

than 10�11.
-50 0 50 100 150 200 250 300
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C
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Fig. 4. Grid independent test for b = 2 and D = 10�5 cm2/s in

diffusion-controlled etching (k 	 D): (a) variation of etch

depths for 4 s of etching and (b) concentration distributions

at t = 4 s.
6. Results and discussion

The one-dimensional problem shown in Fig. 1 is

modeled using the proposed FG method. The initial

etchant and substrate thicknesses are set to 0.03 cm

and 51 lm respectively. The density and molecular

weight of the substrate are taken to be 2.1 g/cm3 and

60 respectively. The stoichiometric reaction parameter

is 6. The diffusion coefficient of etchant is 10�5 cm2/s.

The concentration at the ‘‘free’’ boundary (i.e. opposite
to the etchant–substrate interface) is kept at the initial

concentration C0. A dimensionless variable b is used

to present the results. This variable is defined as

b � mqSub=MSub

C0

ð34Þ

From Eq. (34), b is inversely proportional to the initial
etchant concentration C0.

6.1. Diffusion-controlled etching

In diffusion-controlled etching the reaction rate at the

interface is infinitely fast compared to diffusion of etch-

ant to the interface. Therefore, for a given diffusion coef-

ficient of etchant, if k 	 D, then the etching process can

be assumed diffusion-controlled. Fig. 4 shows the grid

independent study for four spatial grid sizes namely,

12 lm, 6 lm, 3 lm and 1.5 lm. The time step is kept

at 0.001 s and further reduction in the time step does

not alter the solution. Fig. 4a shows the etch depth ver-

sus time plot with b = 2. It can be seen that all four spa-
tial grids capture the etchfront accurately. Fig. 4b shows

the concentration distributions at t = 4 s.

Fig. 5 shows the comparisons of the etch depth and

concentration distributions for four b values. The
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control volume size and the time step size used in FG

method are 1.5 lm and 0.001 s respectively. The etch

depth and concentration distributions obtained using

the proposed approach are compared with the exact

solutions [7]. Kuiken et al. derived the exact solution

for concentration distribution and etch depth variation

for etching in semi-infinite etchant medium. Fig. 5a

shows the etch depths variations for 1 s of etching and

Fig. 5b shows the concentration distributions at t = 1 s

for four b values. It is also seen that as the value of b
increases, the etch depth decreases. This is because b is
inversely proportional to the initial etchant concentra-

tion C0 for a given etchant–substrate combination.

6.2. Reaction-controlled etching

In the reaction-controlled etching the reaction rate is

finite. For the test problem considered here, the rate

constant of reaction is taken as, k = 10�5 cm2/s. Fig.

6a shows the etch depths over 4 s for four b values.

An approximate analytical solution called the Deal–

Grove (DG) model [34,35] is also shown for complete-

ness. The FG solutions agree well with the MG results.

The DG model however overpredicts the etch depths.

This is especially true at smaller b values. Fig. 6b shows
the concentration profiles at t = 4 s for four b values.

Again, the FG and MG solutions agree well. The DG
model assumes negligible change in the concentration

of etchant in the etchant medium (see Fig. 6b). As a re-

sult, the DG model overpredicts the etch depth as shown

in Fig. 6a.

Effects of the rate of reaction on etch depth and con-

centration distributions are shown in Fig. 7 for b = 1. A
range of k values is selected to study the effect of the rate

of reaction. It is seen from Fig. 7a that as k increases, the

etch depth increases at a given time. The increase in k

means reaction rate increases at the interface. Hence

etching of substrate is increased which leads to larger

etch depth at a given time. Under a limiting case when

the reaction rate is infinitely fast i.e. k 	 D, the etching

process is said to be diffusion-controlled. From Fig. 7a it

is seen that when k P 0.1 cm/s, the etching can be con-

sidered diffusion-controlled as further increase in k does

not alter the etch depth and the concentration distribu-

tions. For a given diffusion coefficient of etchant, the

highest etch depth in a given time is obtained when the

etching is diffusion-controlled.

From Fig. 7b, it is seen that the etchant concentration

at the etchant–substrate interface remains at the initial

concentration when k = 10�5 cm/s. At this value of k,

the reaction is slow and any etchant consumed in the

etching process is replenished via diffusion. The etchant

concentration at the interface decreases as the value of

k increases. It is zero when k P 0.1 cm/s. As mentioned,

at this value of k, the etching is diffusion-controlled



Fig. 7. Comparisons of FG and MG methods for a range of k

values with D = 10�5 cm2/s and b = 1: (a) variation of etch

depths for 1 s of etching and (b) concentration distributions at

t = 1 s.
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and from Eq. (3) the etchant concentration at the inter-

face is zero.
7. Concluding remarks

A new mathematical model based on the fixed-grid

approach has been presented. The proposed method is

analogous to the enthalpy method used in the modeling

of melting/solidification processes. A detailed formula-

tion based on the total concentration of the etchant is

presented. In the proposed approach the governing equa-

tion includes the interface condition. With this proposed

method the etchfront position need not be coupled

explicitly. The method has been applied to one-dimen-

sional diffusion-controlled and reaction-controlled etch-

ings. For demonstration purposes, the finite-volume

method is used to discretize the governing equation.

The results show that the etch depth and the etchant con-

centration are predicted accurately using the proposed

method. Since the grid size is fixed and the computation

domain is the whole etchant and substrate domain, the

proposed method can be easily extended to model multi-

dimensional etching problems. In multidimensional

cases, there are more than one etching control volumes

where reaction can occur simultaneously. In such cases

etching control volumes can be identified using the same

procedure as discussed in this article.
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